
CACHE MISSING FOR FUN AND PROFIT

COLIN PERCIVAL

Abstract. Simultaneous multithreading — put simply, the shar-
ing of the execution resources of a superscalar processor between
multiple execution threads — has recently become widespread via
its introduction (under the name “Hyper-Threading”) into Intel
Pentium 4 processors. In this implementation, for reasons of ef-
ficiency and economy of processor area, the sharing of processor
resources between threads extends beyond the execution units; of
particular concern is that the threads share access to the memory
caches.

We demonstrate that this shared access to memory caches pro-
vides not only an easily used high bandwidth covert channel be-
tween threads, but also permits a malicious thread (operating, in
theory, with limited privileges) to monitor the execution of another
thread, allowing in many cases for theft of cryptographic keys.

Finally, we provide some suggestions to processor designers, op-
erating system vendors, and the authors of cryptographic software,
of how this attack could be mitigated or eliminated entirely.

1. Introduction

As integrated circuit fabrication technologies have improved, provid-
ing not only faster transistors but smaller transistors, processor design-
ers have been met with two critical challenges. First, memory latencies
have increased dramatically in relative terms; and second, while it is
easy to spend extra transistors on building additional execution units,
many programs have fairly limited instruction-level parallelism, which
limits the extent to which additional execution resources can be uti-
lized. Caches provide a partial solution to the first problem, while
out-of-order execution provides a partial solution to the second.

In 1995, simultaneous multithreading was revived1 in order to com-
bat these two difficulties [12]. Where out-of-order execution allows
instructions to be reordered (subject to maintaining architectural se-
mantics) within a narrow window of perhaps a hundred instructions,

Key words and phrases. Side channels, simultaneous multithreading, caching.
1Simultaneous multithreading had existed since at least 1974 in theory [10], even

if it had not yet been shown to be practically feasible.



2 COLIN PERCIVAL

simultaneous multithreading allows instructions to be reordered across
threads; that is, rather than having the operating system perform con-
text switches between two threads, it can schedule both threads simul-
taneously on the same processor, and instructions will be interleaved,
dramatically increasing the utilization of existing execution resources.

On the 2.8 GHz Intel Pentium 4 with Hyper-Threading processor,
with which the remainder of this paper is concerned2, the two threads
being executed on each processor share more than merely the execu-
tion units; of particular concern to us, they share access to the memory
caches [8]. Caches have already been demonstrated to be cryptograph-
ically dangerous: Many implementations of AES [9] are subject to tim-
ing attacks arising from the non-constancy of S-box lookup timings [1].
However, having caches shared between threads provides a vastly more
dangerous avenue of attack.

2. Covert communication via paging

To see how shared caches can create a cryptographic side-channel, we
first step back for a moment to a simpler problem — covert channels [7]
— and one of the classic examples of such a channel: virtual memory
paging.

Consider two processes, known as the Trojan process and the Spy
process, operating at different privilege levels on a multilevel secure
system, but both with access to some large reference file (naturally, on
a multilevel secure system this access would necessarily be read-only).
The Trojan process now reads a subset of pages in this reference file,
resulting in page faults which load the selected pages from disk into
memory. Once this is complete (or even in the middle of this operation)
the Spy process reads every page of the reference file and measures the
time taken for each memory access. Attempts to read pages which
have been previously read by the Trojan process will complete very
quickly, while those pages which have not already been read will incur
the (easily measurable) cost of a disk access. In this manner, the Trojan
process can repeatedly communicate one bit of information to the Spy
process in the time it takes for a page to be loaded from disk into
memory, up to a total number of bits equal to the size (in pages) of the
shared reference file.

2We examine the 2.8 GHz Intel Pentium 4 with Hyper-Threading processor for
reasons of availability, but expect that the results in this paper will apply equally
to all processors with the same simultaneous multithreading and memory cache
design.



CACHE MISSING FOR FUN AND PROFIT 3

If the two processes do not share any reference file, this approach
will not work, but instead an opposite approach may be taken: Instead
of faulting pages into memory, the Trojan process can fault pages out

of memory. Assume that the Trojan and Spy processes each have an
address space of more than half of the available system memory and
the operating system uses a least-recently-used page eviction strategy.
To transmit a “one” bit, the Trojan process reads its entire address
space; to transmit a “zero” bit, the Trojan process spins for the same
amount of time while only accessing a single page of memory. The Spy
process now repeatedly measures the amount of time needed to read
its entire address space. If the Trojan process was sending a “one”
bit, then the operating system will have evicted pages owned by the
Spy process from memory, and the necessary disk activity when those
pages are accessed will provide an easily measurable time difference.
While this covert channel has far lower bandwidth than the previous
channel — it operates at a fraction of a bit per second, compared to a
few hundred bits per second — it demonstrates how a shared cache can
be used as a covert channel, even if the two communicating processes
do not have shared access to any potentially cached data.

3. L1 cache missing

The L1 data cache in the Pentium 4 consists of 128 cache lines of
64 bytes each, organized into 32 4-way associative sets. This cache is
completely shared between the two execution threads; as such, each of
the 32 cache sets behaves in the same manner as the paging system
discussed in the previous section: The threads cannot communicate by
loading data into the cache, since no data is shared between the two
threads3, but they can communicate via a timing channel by forcing
each other’s data out of the cache.

A covert channel can therefore be constructed as follows: The Trojan
process allocates an array of 2048 bytes, and for each 32-bit word it
wishes to transmit, it accesses byte 64i of the array iff bit i of the word is
set. The Spy process allocates an array of 8192 bytes, and repeatedly
measures the amount of time needed to read bytes 64i, 64i + 2048,
64i + 4096, and 64i + 6144 for each 0 ≤ i < 32. Each memory access
performed by the Trojan will evict a cache line owned by the Spy,

3By default, cache lines are tagged according to which thread “owns” them and
cannot be accessed by the other thread; this behaviour may be modified by the
operating system, but only to the extent of allowing cache line sharing between
threads with the same paging tables, and such threads can already communicate.



4 COLIN PERCIVAL

mov ecx, start_of_buffer

sub length_of_buffer, 0x2000

rdtsc

mov esi, eax

xor edi, edi

loop:

prefetcht2 [ecx + edi + 0x2800]

add cx, [ecx + edi + 0x0000]

imul ecx, 1

add cx, [ecx + edi + 0x0800]

imul ecx, 1

add cx, [ecx + edi + 0x1000]

imul ecx, 1

add cx, [ecx + edi + 0x1800]

imul ecx, 1

rdtsc

sub eax, esi

mov [ecx + edi], ax

add esi, eax

imul ecx, 1

add edi, 0x40

test edi, 0x7C0

jnz loop

sub edi, 0x7FE

test edi, 0x3E

jnz loop

add edi, 0x7C0

sub length_of_buffer, 0x800

jge loop

Figure 1. Example code for a Spy process monitoring
the L1 cache.



CACHE MISSING FOR FUN AND PROFIT 5

resulting in lines being reloaded from the L2 cache4, which adds an
additional latency of approximately 30 cycles if the memory accesses
are dependent. This alone would not be measurable, thanks to the
long latency of the RDTSC (read time stamp counter) instruction, but
this problem is resolved by adding some high-latency instructions – for
example, integer multiplications – into the critical path. In Figure 1
we show an example of how the Spy process could measure and record
the amount of time required to access all the cache lines of each set.

Using this code, 32 bits can be reliably transmitted from the Tro-
jan to the Spy in roughly 5000 cycles with a bit error rate of under
25%; using an appropriate error correcting code, this provides a covert
channel of 400 kilobytes per second on a 2.8 GHz processor.

4. L2 cache missing

The same general approach is effective in respect of the L2 cache,
with a few minor complications. The Pentium 4 L2 cache (on the par-
ticular model which we are examining) consists of 4096 cache lines of
128 bytes each, organized into 512 8-way associative sets. However,
the data TLB holds only 64 entries — only enough to provide address
mappings for half of the cached data5. As a result, a Spy process op-
erating in the same manner as described in the previous section will
incur the cost of TLB misses on at least some of its memory accesses.
To avoid allowing this to add noise to the measurements, we can resort
to ensuring that every memory access incurs the cost of a TLB miss,
by accessing each of the 128 pages (512 kB divided by 4 kB per page)
before returning to the first page and accessing the second cache line it
contains. (Another option would use a buffer of 16 MB, placing each
potentially cached line into a separate page, but accessing the lines in
a suitable order is just as effective.) Since the TLB entries have to
be repeatedly reloaded, however, we also experience some additional
cache misses, as the memory holding the paging tables will be repeat-
edly reloaded into the cache. Fortunately, this will only affect a small
number of cache lines, leaving the vast majority of the cache in full
working covert-channel order.

Another complication is introduced by the design of the Pentium 4
as a streaming processor. The “Advanced Transfer Cache” includes a
capability for hardware prefetching: If a series of cache misses occur,
in arithmetic progression, within a single page, then the cache will

4In fact, thanks to the pseudo-LRU algorithm for cache line replacement, one
memory access by the Trojan process causes four cache misses by the Spy.

5Unless 4 MB pages are used; but these are often not available to user processes.



6 COLIN PERCIVAL

“recognize” this as a data stream and prefetch two additional cache
lines. This is quite effective for reducing cache misses; but since we
instead want to maximize cache misses, it becomes a disadvantage.
Here we can simply trust to luck: If we access cache lines in an irregular
manner (e.g., following a de Bruijn cycle rather than accessing the lines
in increasing address order), then it is unlikely that we will exhibit
three or more cache misses in arithmetic progression, and the hardware
prefetcher will not activate.

Finally, since the L2 cache is used for both data and code, there will
be some inevitable cache collisions (and line evictions) caused by the
instruction fetching activity.

Due to the lower memory bandwidth, increased size of L2 cache sets
(8 lines of 128 bytes, vs. 4 lines of 64 bytes in the L1 cache), and
noise introduced by memory activity associated with TLB misses and
instruction fetching, the L2 cache provides a significantly lower band-
width covert channel than the L1 cache. In roughly 350000 cycles (on
the same machine as previously used), 512 bits can be transmitted with
an error rate of under 25%; this provides a channel of approximately
100 kilobytes per second.

Despite the reduced bandwidth, however, the L2-collision covert
channel is potentially more interesting than the L1-collision channel:
On systems without symmetric multithreading — i.e., where the Tro-
jan and Spy processes are always separated by context switches — the
contents of the L1 cache will tend to be fairly comprehensively replaced
between schedulings of the Spy process; the L2 cache however, due to
its larger size, is often not completely replaced, allowing it to be used
as a covert channel with a bandwidth of a several bits per context
switch. On an otherwise quiescent system this could easily provide a
covert channel of a few kilobits per second, and several times that if
the kernel makes the POSIX sched yield(2) system call [4] available.

5. OpenSSL key theft

Having demonstrated the effectiveness of this cache-missing approach
in the construction of a covert channel, we now examine it as a crypt-
analytic side channel. Taking as a demonstration platform OpenSSL
0.9.7c [11] running on FreeBSD 5.2.1-RELEASE-p13 [3], we perform
a 1024-bit private RSA operation in one process (via the command
openssl rsautl -inkey priv.key -sign), while running the L1 Spy
process described in Section 3. To ensure that the two processes
run simultaneously, we start running the Spy process before we start
OpenSSL, and stop it after OpenSSL has finished, while minimizing the



CACHE MISSING FOR FUN AND PROFIT 7

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x · a2k+1 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x · a2k+1 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x · a2k+1 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

T
im

e
(c

y
cl

es
)

Cache congruency class

0 · 105

1 · 105

2 · 105

3 · 105

4 · 105

5 · 105

0 31

Figure 2. Part of a 512-bit modular exponentiation in
OpenSSL 0.9.7c. The shading of each block indicates
the number of cycles needed to access all the lines in
a cache set, ranging from 120 cycles (white) to over 170
(black). The circled regions reveal information about the
multipliers a2k+1 being used.



8 COLIN PERCIVAL

number of other processes running; without these steps, an attacker
might need to make several attempts before he successfully “spies”
upon OpenSSL.

Since OpenSSL uses the Chinese Remainder Theorem [6] when per-
forming private key operations, it computes a 1024-bit modular expo-
nentiation over Zpq using two 512-bit modular exponentiations over the
rings Zp and Zq. Further, OpenSSL utilizes a “sliding window” method
of modular exponentiation, decomposing x := ad mod p into a series
of squarings x := x2 mod p and multiplications x := x · a2k+1 mod p,
using a set of precomputed multipliers {a, a3, a5 . . . a31} mod p.

In Figure 2 we show a small portion of one such modular exponenti-
ation, as seen from the perspective of the L1 Spy process. The modular
squarings and modular multiplications are easily distinguishable here;
this difference results from the use of the BN sqr vs. BN mul functions:
BN sqr is slightly faster, but uses a different temporary working space
for performing Karatsuba multiplication [5] and consequentially leaves
a different “footprint” behind in the cache.

From the sequence of multiplications and squarings, we can typically
obtain about 200 bits out of each 512-bit exponent — for each multi-
plication we can infer a 1 bit, since the multipliers are all odd powers,
and any time we have more than five squarings without an intervening
multiplication, we can infer the presence of 0 bits, since the multipliers
are of degree at most 31.

This alone is not quite enough to make factoring the RSA modulus
N = pq easy — we need the low 256 bits of either exponent [2] or more
than half the bits randomly selected from both exponents6 — but ad-
ditional bits can be obtained by close inspection of the “footprint” left
behind by the multiplications x := x · a2k+1 mod p. These multipliers
are precomputed at the start of the modular exponentiation, and we
can easily identify the locations where they are stored by examining
the footprints left in the cache during this process; each subsequent
multiplication will then load the appropriate multiplier out of memory,
indicating to us — if we are lucky — which multiplier is being used.

Obtaining these exponent bits is made non-trivial by the “noise”
from the modular multiplications — we cannot distinguish between
a cache eviction resulting from a multiplier a2k+1 being accessed and
an eviction which results from the fixed memory-access pattern of the
modular multiplication if they are mapped to the same cache set —

6To see why this is sufficient, consider the set of pairs (p, q) satisfying
pq ≡ N (mod 2j) as j increases — given more than half of the bits of p and q,
this set can be repeatedly pruned to avoid exponential growth.



CACHE MISSING FOR FUN AND PROFIT 9

and even once the correct cache set has been identified, the multiplier
is often not uniquely determined; but in the case of OpenSSL we can
typically identify the multiplier to within two possibilities in 50% of
the modular multiplications. This provides us with an additional 110
bits from each exponent on average, for a total of 310 out of 512 bits,
allowing the RSA modulus N to be easily factored.

6. Solutions and workarounds

Both the simultaneous multithreading covert channel and the as-
sociated side channel can be easily blocked by processor designers. In
addition to the trivial option of not utilizing simultaneous multithread-
ing, if the data caches are split into separate parts, with no sharing of
resources between threads, then the channel would vanish. More in-
terestingly, the covert channel can be almost completely removed, and
the side channel can be made small enough as to be cryptologically
insignificant, if the cache eviction logic is changed: Rather than using
a single pseudo-LRU cache eviction strategy, the cache eviction logic
could be made thread-aware and only allow thread A to evict a cache
line “owned” by thread B if thread B currently “owns” more than its
“fair share”(i.e., one half on current processors) of the cache lines in the
set7. As we lack expertise in the field of microarchitecture, we cannot
comment upon whether such a strategy would be practical in such a
performance-critical path as the L1 data cache.

These channels can also be closed by the operating system. Again,
simultaneous multithreading could be disabled; but a better solution
can be provided by the kernel scheduler. Recognizing that a side chan-
nel between threads is only dangerous if the threads are operating at
different privileges — or, put another way, if the threads are not per-
mitted to debug each other — the scheduler could be written in such
a way as to use the credentials of threads in the process of determin-
ing which threads should be scheduled on which (virtual) processors.
There are some potential dangers in this approach, however: Since the
credentials of a thread can be changed during a system call, the kernel
would have to re-evaluate whether a set of threads are allowed to share
a processor core at several different points, which could lead to a loss
of performance, the introduction of bugs, and quite possibly difficulties
involving the locking of kernel data.

In some cases, this side channel can also be closed at the application
level. If applications and libraries are written in such a manner that the

7Naturally, we would also require that cache lines are marked as “not owned”
upon a context switch.



10 COLIN PERCIVAL

code path and sequence of memory accesses are oblivious to the data
and key being used, then all timing side channels are immediately and
trivially closed8. This would be a dramatic divergence from existing
practice9, and would require that some existing algorithms be thrown
out or reworked considerably (e.g., the “sliding window” method of
modular exponentiation), which could impact performance; however,
in the specific case of RSA private key operations this loss of perfor-
mance can be as little as 10%. This approach has the disadvantage
of requiring a vast amount of code to be audited if it is to be carried
out comprehensively (since any application which could conceivably be
used to process senstive data would need to be inspected), but a good
first step would be to rewrite the most obvious target for such attacks,
namely cryptographic libraries.

Finally, the traditional method of closing covert timing channels is
available: Access to the clock — in this case, the time stamp counter
— can be removed. However, this is only an option on single-processor
systems: On multi-processor systems, a “virtual” time stamp counter
with sufficient precision could be obtained by utilizing a second thread
which repeatedly increments a memory location. Even on uniprocessor
systems, this approach should not be taken lightly, since many applica-
tions expect the time stamp counter to be available, either for profiling
purposes, or to be used in combination with a random stream of events
(e.g., key presses) as a source of entropy. A somewhat more tolerable
approach would limit the frequency with which the time stamp counter
could be read — say, to a maximum of four times within any 10000 cycle
window — which would be very unlikely to affect any “real” software;
but this could only be performed via modifications in the microcode,
and it is not clear if the necessary modifications would even be possible
given existing architectural limitations.

7. Recommendations

Our recommendations are as follows:
1. CPU designers should, on all future processors which implement
simultaneous multithreading, use cache eviction strategies which re-
spect threading and minimize the extent to which one thread can evict
data used by another thread. Similarly, “multi-core” processors should

8We assume that the hardware used does not exhibit data-dependent instruction
timings; without this assumption, it is impossible to offer any such guarantees.

9In OpenSSL, the large integer arithmetic code alone contains over a thousand
“if” statements.



CACHE MISSING FOR FUN AND PROFIT 11

either avoid sharing caches between the processor cores or use thread-
aware cache eviction strategies.

We further recommend that “x86” processors implementing Hyper-
Threading should use a bit in the processor feature flags register to in-
dicate whether the caches have been designed to close these covert and
side channels, in order that operating systems can determine whether
countermeasures are necessary.
2. Operating systems should first determine if countermeasures need
to be taken. If the processor reports that the cache-eviction channels
have been closed (as described above) or if the system is known to have
no untrusted users, then no action needs to be taken. Otherwise, action
must be taken to ensure that no pair of threads execute simultaneously
on the same processor core if they have different privileges.

Due to the complexities of performing such privilege checks correctly
and based on the principle that security fixes should be chosen in such
a way as to minimize the potential for new bugs to be introduced,
we recommend that existing operating systems provide the necessary
avoidance of inappropriate co-scheduling by never scheduling any two
threads on the same core, i.e., by only scheduling threads on the first
thread associated with each processor core10. The more complex solu-
tion of allowing certain “blessed” pairs of threads to be scheduled on
the same processor core is best delayed until future operating systems
where it can be extensively tested.

In light of the potential for information to be leaked across con-
text switches, especially via the L2 and larger cache(s), we also recom-
mend that operating systems provide some mechanism for processes
to request special “secure” treatment, which would include flushing all
caches upon a context switch. It is not immediately clear whether it is
possible to use the occupancy of the cache across context switches as a
side channel, but if an unprivileged user can cause his code to pre-empt
a cryptographic operation (e.g., by operating with a higher scheduling
priority and being repeatedly woken up by another process), then there
is certainly a strong possibility of a side channel existing even in the
absence of Hyper-Threading.
3. Cryptographic libraries should be rewritten to avoid any data-
dependent or key-dependent memory access or code path patterns. As
noted in the preceeding section, this is important both for the issues

10It is possible to disable Hyper-Threading, but it has been reported that some
systems have problems with interrupt routing, attempting to send interrupts to a
“virtual processor” which doesn’t exist when Hyper-Threading is disabled. Conse-
quently, it is safer to leave Hyper-Threading enabled, with all of the threads able
to respond to interrupts, and close the security problems via the kernel scheduler.



12 COLIN PERCIVAL

discussed in this paper and also to eliminate the potential for new
timing side channels.

We note, however, that due to the large number of cryptographic
libraries in use, and the vastly larger number of applications which use
(and distribute) them, it is impractical to attempt to fix all crypto-
graphic libraries and applications in a narrow time frame, so the first
line of defence against the particular issues discussed here must come
from the operating system.

8. Acknowledgements

The author wishes to thank Jacques Vidrine and Mike O’Connor for
their invaluable aid in facilitating communications prior to the public
disclosure of this security issue, and the many people who provided
helpful feedback during that period.

References

[1] D.J. Bernstein. Cache-timing attacks on AES, 21 Nov 2004. Document ID:
cd9faae9bd5308c440df50fc26a517b4.

[2] D. Coppersmith. Finding a small root of a bivariate integer equation; fac-
toring with high bits known. In U. Maurer, editor, Advances in Cryptology -

EUROCRYPT ’96, LNCS 1070, pages 178–189. Springer-Verlag, 1996.
[3] FreeBSD Project. The FreeBSD operating system.

http://www.freebsd.org/.
[4] IEEE Std 1003.1. 2004 Edition.
[5] A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on au-

tomata. Soviet Physics - Doklady, 7:595–596, 1963.
[6] D.E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer

Programming. Addison Wesley, third edition, 1997.
[7] B.W. Lampson. A note on the confinement problem. Communications of the

ACM, 16(10):613–615, 1973.
[8] D. Marr, F. Binns, D. Hill, G. Hinton, D. Koufaty, J. Miller, and M. Upton.

Hyper-threading technology architecture and microarchitecture: A hypertext
history. Intel Technology Journal, February 2002.
http://developer.intel.com/technology/itj/2002/volume06issue01/.

[9] National Institute of Standards and Technology. Announcing the Advanced
Encryption Standard (AES). NIST FIPS PUB 197, U.S. Department of Com-
merce, 2001.

[10] L.E. Shar and E.S. Davidson. A multiminiprocessor system implemented
through pipelining. IEEE Computer, 7(2):42–51, 1974.

[11] The OpenSSL Project. OpenSSL: The open source toolkit for SSL/TLS.
http://www.openssl.org/.

[12] D.M. Tullsen, S. Eggers, and H.M. Levy. Simultanous multithreading: Max-
imizing on-chip parallelism. In Proceedings of the 22nd Annual International

Symposium on Computer Architecture, pages 392–403, 1995.

IRMACS Centre, Simon Fraser University, Burnaby, BC, Canada

E-mail address: cperciva@freebsd.org



CACHE MISSING FOR FUN AND PROFIT 13

Appendix A. Vendor statements

CVE: The Common Vulnerabilities and Exposures (CVE) project
has assigned the name CAN-2005-0109 to the problem of informa-
tion disclosure resulting from cache evictions in simultaneous multi-
threading processors. This is a candidate for inclusion in the CVE list
(http://cve.mitre.org), which stadardizes names for security prob-
lems.

FreeBSD: This issue affects FreeBSD/i386 and FreeBSD/amd64,
and is address in advisory FreeBSD-SA-05:09.htt.

NetBSD: The NetBSD Security-Officer Team believes that workarounds
will be suitable for the majority of our users. Since this issue is a com-
plex one, the ‘right’ solution will require a larger discussion which is
only possible once this issue is public. This issue will be addressed in
advisory NetBSD-SA2005-001, which will provide a list of workarounds
for use until the ‘final’ conclusion is reached.

OpenBSD: OpenBSD does not directly support hyperthreading at
this time, therefore no patch is available. Affected users may disable
hyperthreading in their system BIOS. We will revisit this issue when
hyperthreading support is improved.

SCO: This affects OpenServer 5.0.7 if an update pack is applied
and SMP is installed; if also affects UnixWare 7.1.4 and 7.1.3 with
hyperthreading enabled, but hyperthreading is disabled in UnixWare
by default. This is covered by advisory SCOSA-2005.24.


